Abstract

Oxygen vacancies play an important role in many photocatalytic reaction, and have attracted enormous attention from the scientists and engineers. The surface or bulk oxygen vacancies have a different function in the photo-reaction process. Herein, three different TiO2 nanoparticles possessing surface oxygen vacancies (SO) and/or bulk single-electron-trapped oxygen vacancy (SETOV) were fabricated by dehydration or reduction of different titania precursors. The three kinds of TiO2 nanoparticles were characterized systematically by XRD, TEM, Raman, XPS, ESR, TG, UV–vis DRS, and PL techniques. The photocatalytic reduction results of CO2 indicated that both the bulk SETOVs and surface oxygen vacancies contributed to the enhancement of the light absorption, while the surface vacancies facilitated to the separation of the photo-generated charge carriers, and on the contrast, the bulk SETOVs acted as the recombination center. The co-existence of the surface and bulk oxygen vacancies exhibited a synergistic effect to improve the photoreduction efficiency of CO2 to CH4. Through adjusting the ratio of the surface and bulk oxygen vacancies and analyzing the positron lifetime and relative intensity by positron annihilation, the photoreduction efficiency of CO2 improved with the increase of the ratio of surface oxygen vacancies to bulk SETOVs.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.