Abstract
Lithium niobate and lithium tantalate are among the most widespread materials for nonlinear, integrated photonics. Mixed crystals with arbitrary Nb–Ta ratios provide an additional degree of freedom to not only tune materials properties, such as the birefringence but also leverage the advantages of the singular compounds, for example, by combining the thermal stability of lithium tantalate with the larger nonlinear or piezoelectric constants of lithium niobate. Periodic poling allows to achieve phase-matching independent of waveguide geometry and is, therefore, one of the commonly used methods in integrated nonlinear optics. For mixed crystals, periodic poling has been challenging so far due to the lack of homogeneous, mono-domain crystals, which severely inhibit domain growth and nucleation. In this work, we investigate surface-near (<1μm depth) domain inversion on x-cut lithium niobate tantalate mixed crystals via electric field poling and lithographically structured electrodes. We find that naturally occurring head-to-head or tail-to-tail domain walls in the as-grown crystal inhibit domain inversion at a larger scale. However, periodic poling is possible if the gap size between the poling electrodes is of the same order of magnitude or smaller than the average size of naturally occurring domains. This work provides the basis for the nonlinear optical application of lithium niobate tantalate mixed crystals.
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.