Abstract

We report a reduction of inhomogeneous broadening in CdSe-related quantum wells in ZnSe by employing a growth technique that uses a CdS-compound source instead of the standard Cd elemental source for molecular-beam epitaxy. Assisted by the low sticking coefficient of sulfur and possibly an exchange reaction between S and Se, only a small S contamination is observed. A comparison with standard layers reveals an increase in quality and homogeneity by a strong reduction of the photoluminescence (PL) linewidth. Samples obtained by our method show extremely little lateral confinement as indicated by a lack of sharp single dot emission lines in micro PL and the absence of the extensive redshift observed in temperature dependent PL of fluctuating well potentials.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call