Abstract

BackgroundScience, technology, engineering, and mathematics (STEM) education is becoming more prevalent at the elementary level, and there has been a push to focus on the integration between the STEM disciplines. Researchers within this study sought to understand the extent to which triads composed of a classroom teacher, student teacher, and an engineering fellow were able to use the context of an engineering design challenge to integrate and incorporate STEM concepts into the elementary classroom. Using a content analysis approach, researchers analyzed STEM integration across four phases of learning: professional development workshop, lesson plan, classroom enactment, and post-lesson reflection.ResultsResults highlight the ability for triads to conceptualize the integration of STEM concepts but also the challenge to sustain the integration of STEM concepts across phases of enactment.ConclusionsThe need to support teacher learning of STEM content and pedagogical practices for integration are discussed.

Highlights

  • Science, technology, engineering, and mathematics (STEM) education is becoming more prevalent at the elementary level, and there has been a push to focus on the integration between the STEM disciplines

  • Science, technology, engineering, and mathematics (STEM) education is becoming more prevalent at the elementary level, and recent national reports have called for a change in how these disciplines are taught with an emphasis on the integration between the STEM disciplines (National Academy of Engineering and National Research Council 2009; 2011; 2012; 2014)

  • Despite the existence of several Professional development (PD) opportunities focused on integrating STEM at the elementary level, there is limited research examining specific content and skills that are preferred when teaching integrated STEM and how these content and skills can be imparted to help with the widespread adoption of integrated STEM in elementary classrooms (O’Brien et al 2014)

Read more

Summary

Introduction

Technology, engineering, and mathematics (STEM) education is becoming more prevalent at the elementary level, and there has been a push to focus on the integration between the STEM disciplines. Technology, engineering, and mathematics (STEM) education is becoming more prevalent at the elementary level, and recent national reports have called for a change in how these disciplines are taught with an emphasis on the integration between the STEM disciplines (National Academy of Engineering and National Research Council 2009; 2011; 2012; 2014). Even in its infancy, indicates that the inclusion of engineering experiences within the STEM curriculum can develop young students’ understanding of the various roles of engineering within the society as well as helping to enhance achievement, motivation, and problem solving by contextualizing mathematics and science content (Brophy et al 2008; English and King 2015; Stohlmann et al 2012). Despite the existence of several PD opportunities focused on integrating STEM at the elementary level, there is limited research examining specific content and skills that are preferred when teaching integrated STEM and how these content and skills can be imparted to help with the widespread adoption of integrated STEM in elementary classrooms (O’Brien et al 2014)

Objectives
Methods
Results
Discussion
Conclusion
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call