Abstract

Cadmium (Cd) contamination is a serious challenge in agricultural soils worldwide, resulting in Cd entering the food chain mainly through plant-based food and threatening human health. Minimizing Cd bioaccumulation in wheat is an important way to prevent Cd hazards to humans. Hydroponic and pot experiments were conducted to comprehensively evaluate the effects of zinc sulfate (ZnSO4) and zinc oxide nanoparticles (nZnO) on Cd uptake, translocation, subcellular distribution, cellular ultrastructure, and gene expression in two wheat genotypes that differ in grain Zn accumulation. Results showed that high-dose nZnO significantly reduced root Cd concentration (52.44%∼56.85%) in two wheats, in contrast to ZnSO4. The S216 exhibited higher tolerance to Cd compared to Z797. Importantly, Zn supplementation enhanced Cd sequestration into vacuoles and binding to cell walls, which conferred stability to ultracellular structures and photosynthetic apparatus. Down-regulation of influx transporter (TaHMA2 and TaLCT1) and up-regulation of efflux transporters (TaTM20 and TaHMA3) in Z797 might contribute to Zn-dependent alleviation of Cd toxicity and enhance its Cd tolerance. Down-regulation of ZIP transporters (TaZIP3, -5, and -7) might contribute to an increase in root Zn concentration and inhibit Cd absorption. Additionally, soil Zn provided an effective strategy for the reduction of grain Cd concentrations in both wheats, with a reduction of 26%∼32% (high ZnSO4) and 11%∼67% (high nZnO), respectively. Collectively, these findings provide new insights and perspectives on the mechanisms of Cd mitigation in wheats with different Zn fertilizers and demonstrate that the effect of nZnO in mitigating Cd stress is greater than that of ZnSO4 fertilizers.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.