Abstract

We identify configurational phases and structural transitions in a polymer nanotube composite by means of machine learning. We employ various unsupervised dimensionality reduction methods, conventional neural networks, as well as the confusion method, an unsupervised neural-network-based approach. We find neural networks are able to reliably recognize all configurational phases that have been found previously in experiment and simulation. Furthermore, we locate the boundaries between configurational phases in a way that removes human intuition or bias. This could be done before only by relying on preconceived, ad hoc order parameters.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.