Abstract
This study attempted to accurately segment the masses and distinguish malignant from benign tumors. The masses were segmented using a technique that combines pixel aggregation with maximum likelihood analysis. We found that the segmentation method can delineate the tumor body as well as tumor peripheral regions covering typical mass boundaries and some spiculation patterns. We have developed a Multiple Circular Path Convolution Neural Network (MCPCNN) to analyze a set of mass intensity, shape, and texture features for determination of the tumors as malignant or benign. The features were also fed into a conventional neural network for comparison. We also used values obtained from the maximum likelihood values as inputs into a conventional backpropagation neural network. We have tested these methods on 51 mammograms using a grouped Jackknife experiment incorporated with the ROC method. Tumor sizes ranged from 6mm to 3cm. The conventional neural network whose inputs were image features achieved an A<SUB>z</SUB> of 0.66. However the MCPCNN achieved an A<SUB>z</SUB> value of 0.71. The conventional neural network whose inputs were maximum likelihood values achieved an Az value of 0.84. In addition, the maximum likelihood segmentation method can identify the mass body and boundary regions, which is essential to the analysis of mammographic masses.
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have