Abstract
Dimensionality reduction is one of the most fundamental topic in machine learning. A range of methods focus on dimensionality reduction have been proposed in various areas. Among the unsupervised dimensionality reduction methods, graph-based dimensionality reduction has begun to draw more and more attention due to its effectiveness. However, most existing graph-based methods have high computation complexity, which is not applicable to large-scale problems. To solve this problem, an unsupervised graph-based dimensionality reduction method called fast and flexible large graph embedding (FFLGE) based on anchors is proposed. FFLGE uses an anchor-based strategy to construct an anchor-based graph and design similarity matrix and then perform the dimensionality reduction efficiently. The computational complexity of the proposed FFLGE reduces to $O(ndm)$ , where $n$ is the number of samples, $d$ is the number of dimensions and $m$ is the number of anchors. Furthermore, it is interesting to note that locality preserving projection and principal component analysis are two special cases of FFLGE. In the end, the experiments based on several publicly large-scale datasets proves the effectiveness and efficiency of the method proposed.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: IEEE Journal of Selected Topics in Signal Processing
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.