Abstract

The paper considers a number of strategies for training radial basis function (RBF) classifiers. A benchmark problem is constructed using ten-dimensional input patterns which have to be classified into one of three classes. The RBF networks are trained using a two-phase approach (unsupervised clustering for the first layer followed by supervised learning for the second layer), error backpropagation (supervised learning for both layers) and a hybrid approach. It is shown that RBF classifiers trained with error backpropagation give results almost identical to those obtained with a multilayer perceptron. Although networks trained with the two-phase approach give slightly worse classification results, it is argued that the hidden-layer representation of such networks is much more powerful, especially if it is encoded in the form of a Gaussian mixture model. During training, the number of subclusters present within the training database can be estimated: during testing, the activities in the hidden layer of the classification network can be used to assess the novelty of input patterns and thereby help to validate network outputs.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.