Abstract

The subcellular location plays a pivotal role in the functionality of proteins. In this paper we develop a multi-stage linear classifier fusion system based on Efron's bootstrap sampling for predicting subcellular locations of yeast proteins. Three different types of classifiers, i.e. the Naive Bayes (NB) classifier, radial basis function (RBF) network, and multilayer perceptron (MLP), are utilized to construct the component modules in the fusion system. Ten bootstrapped instance sets are generated for training each type of component classifiers respectively. The linear fusion models, updated by the least-mean-square (LMS) algorithm, are used to integrate the local decisions of the component classifiers and derive the final predictions. The empirical results show that the RBF classifiers can reach at slightly higher accuracy and better precision versus the NB or MLP ones. The linear fusion system consistently improves the overall prediction accuracy, in particular 6.65%, 1.77%, and 3.21%, superior to the NB, RBF, and MLP component classifiers, respectively.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.