Abstract
We consider a formulation of supervised learning that endows models with robustness to distributional shifts from training to testing. The formulation hinges upon the superquantile risk measure, also known as the conditional value-at-risk, which has shown promise in recent applications of machine learning and signal processing. We show that, thanks to a direct smoothing of the superquantile function, a superquantile-based learning objective is amenable to gradient-based optimization, using batch optimization algorithms such as gradient descent or quasi-Newton algorithms, or using stochastic optimization algorithms such as stochastic gradient algorithms. A companion software SPQR implements in Python the algorithms described and allows practitioners to experiment with superquantile-based supervised learning.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.