Abstract
AbstractA multilayer data-driven framework for robust structural health monitoring based on a comprehensive application of machine learning and signal processing techniques is introduced. This paper focuses on demonstrating the effectiveness of the framework for damage detection in a steel pipe under environmental and operational variations. The pipe was instrumented with piezoelectric wafers that can generate and sense ultrasonic waves. Damage was simulated physically by a mass scatterer grease-coupled to the surface of the pipe. Benign variations included variable internal air pressure and ambient temperature over time. Ultrasonic measurements were taken on three different days with the scatterer placed at different locations on the pipe. The wave patterns are complex and difficult to interpret, and it is even more difficult to differentiate the changes produced by the scatterer from the changes produced by benign variations. The sensed data were characterized by 365 features extracted from a variety of...
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.