Abstract

The data deluge in medical imaging processing requires faster and more efficient systems. Due to the advance in recent heterogeneous architecture, there has been a resurgence in research aimed at domain-specific accelerators. In this article, we develop an experimental system SuperDragon for evaluating acceleration of a single-particle Cryo-electron microscopy (Cryo-EM) 3D reconstruction package EMAN through a hybrid of CPU, GPU, and FPGA parallel architecture. Based on a comprehensive workload characterization, we exploit multigrained parallelism in the Cryo-EM 3D reconstruction algorithm and investigate a proper computational mapping to the underlying heterogeneous architecture. The package is restructured with task-level (MPI), thread-level (OpenMP), and data-level (GPU and FPGA) parallelism. Especially, the proposed FPGA accelerator is a stream architecture that emphasizes the importance of optimizing computing dominated data access patterns. Besides, the configurable computing streams are constructed by arranging the hardware modules and bypassing channels to form a linear deep pipeline. Compared to the multicore (six-core) program, the GPU and FPGA implementations achieve speedups of 8.4 and 2.25 times in execution time while improving power efficiency by factors of 7.2 and 14.2, respectively.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call