Abstract

Superconducting high-entropy alloys (HEAs) are a newly burgeoning field of unconventional superconductors and raise intriguing questions about the presence of superconductivity in highly disordered systems, which lack regular phonon modes. In our study, we have synthesized and investigated the superconducting characteristics of two new transition elements based HEAs Re0.35Os0.35Mo0.10W0.10Zr0.10 crystallizing in noncentrosymmetric α-Mn structure, and Ru0.35Os0.35Mo0.10W0.10Zr0.10 crystallizing in hexagonal closed-packed structure (hcp). Due to its high hardness, transition-metal-based hexagonal hcp HEA is rare and highly desirable for practical applications. Bulk magnetization, resistivity, and specific heat measurements confirmed bulk type-II superconductivity in both alloys. Specific heat analysis up to the measured low-temperature range suffices for a Bardeen-Cooper-Schrieffer explanation.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.