Abstract

Magnetic structure and spin reorientation transition of 45% Mn substituted HoFeO3 have been investigated using bulk magnetization, neutron powder diffraction and specific heat capacity techniques. These studies confirm the presence of antiferromagnetic ordering of Fe/Mn sublattice below 336 K. The spin reorientation (SR) transition (TSR ~ 290 K) where the magnetic structure changes from Γ4(Ax, Fy, Gz) to Γ1(Gx, Cy, Az) is confirmed by Rietveld analysis of neutron diffraction patterns taken at various temperatures. Though the spin reorientation (SR) transition is happening at 290 K, the system is found to be in mixed Γ4(Ax, Fy, Gz) + Γ1(Gx, Cy, Az) phase from room temperature to 275 K. Below 275 K, the sample exhibits a pure Γ1(Gx, Cy, Az) structure in which the weak ferromagnetic component is absent. Bulk magnetization and specific heat capacity measurements also confirm the Néel temperature and spin reorientation transitions and support the neutron diffraction analysis.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.