Abstract

Northeast China (NEC) is a major crop base in East Asia, and summer drought is one of the climate extremes that significantly influences NEC agricultural production. Therefore, understanding the response of NEC summer drought to global warming is of significance. In this study, based on observation and large-ensemble simulations of the Community Earth System Model (CESM-LE), the variabilities in summer extreme consecutive dry days (CDDs) over NEC are investigated in the present and future climate. In the observation, the NEC summer extreme CDDs showed an increasing trend during the past half century and experienced a significant interdecadal change around the middle 1990s, which is mainly due to the change in the anticyclone over Lake Baikal-Northeast Asia. The anticyclone-related anomalous downward motion and moisture divergence provided favorable conditions for increased summer CDDs over NEC. The CESM-LE multimember ensemble (MME) simulation could reproduce the change in NEC summer extreme CDDs and its related atmospheric circulations, indicating that the observed change in NEC summer extreme CDDs could be largely contributed by anthropogenic forcing. In the future warmer climate, the NEC summer extreme CDDs are projected to show interdecadal variability, which increase by approximately 6.7% in the early 21st century (2020–2030), then decrease by approximately 0.3% in the middle to late 21st century (2040–2080), and further increase by approximately 2.1% in the late 21st century (2085–2100). In addition, the projected changes in the anticyclone over Lake Baikal-Northeast Asia show a similar feature to that of the NEC summer extreme CDDs, which might further provide some confidence in the projection of the NEC summer extreme CDDs due to the physical connection between CDDs and anticyclone in the future.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call