Abstract

Intermittently submergence and drainage status of paddy fields can cause alterations in morphological and chemical characteristics of soils. We conducted a sequential fractionation study to provide an insight into solubility of Sulfur (S) and Molybdenum (Mo) in flooded alluvial paddy soils. The samples (0–15 and 15–30 cm) were taken from marine and riverine alluvial soils in Kedah and Kelantan areas, respectively, and were sequentially extracted with NaHCO3, NaOH, HCl, and HClO4–HNO3. Total S in upper and lower layers of Kedah and Kelantan ranged between 273 and 1121 mg kg−1, and 177 to 1509 mg kg−1, respectively. In upper layers and subsoil of Kedah, average total Mo were 0.34 and 0.27 mg kg−1, respectively. Average total Mo in Kelantan were 0.25 mg kg−1 (surface layer) and 0.28 mg kg−1 (subsoil). Cation exchange capacity (CEC) was positively correlated with plant available amounts of Mo in upper layers of Kedah area. Also, total and medium-term plant-available S was correlated with total carbon (C) at lower layers of Kelantan soil series. But in surface layers of Kelantan soil series, CEC was strongly correlated with total and medium-term plant-available S. Our results indicates that the influence of flooding conditions on soil S and Mo contents in paddy fields may cause long-term changes in S and Mo chemical reactivities.

Highlights

  • Submergence and drainage status of paddy fields can cause alterations in morphological and chemical characteristics of soils

  • We conducted a sequential fractionation study to provide an insight into solubility of Sulfur (S) and Molybdenum (Mo) in flooded alluvial paddy soils

  • Total and medium-term plant-available S was correlated with total carbon (C) at lower layers of Kelantan soil series

Read more

Summary

Introduction

Submergence and drainage status of paddy fields can cause alterations in morphological and chemical characteristics of soils. We conducted a sequential fractionation study to provide an insight into solubility of Sulfur (S) and Molybdenum (Mo) in flooded alluvial paddy soils.

Results
Conclusion
Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.