Abstract

Sufentanil has been used broadly in cardiac surgery, but the mechanisms by which it modulates coronary vascular tone after ischemia-reperfusion injury are largely unknown. Effects of sufentanil on coronary tone and on the relaxation of rat coronary arteries (CAs) in response to endothelium-dependent (acetylcholine) and endothelium-independent (sodium nitroprusside) relaxing agents in the presence of hypoxia-reoxygenation (H/R) was studied in an in vitro organ chamber setup. Sufentanil (10-7-10-4 mol/L) relaxed rat CA rings in endothelium-dependent and endothelium-independent manners. In endothelium-intact rings, preincubation of H/R-treated CAs with sufentanil (10-5 mol/L) significantly increased the acetylcholine response, but did not augment sodium nitroprusside-induced relaxation. Sufentanil-mediated potentiation of acetylcholine-induced relaxation was not affected by a nitric oxide synthase inhibitor or by intermediate- or small-conductance Ca2+-activated K+ channel blockers. However, potentiation was abolished by iberiotoxin (100 nmol/L), a selective inhibitor of large-conductance Ca2+-activated K+ channels, as well as Rp-cAMPS (30 μmol/L), a cyclic AMP-dependent protein kinase (PKA) inhibitor. Sufentanil induced endothelium-dependent and endothelium-independent relaxation and attenuated H/R-induced impairment of endothelium-dependent vasodilation in the rat CAs. The potentiating effect of sufentanil may involve activation of large-conductance Ca2+-activated K+ channels via cAMP-dependent mechanisms.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call