Abstract

Essential hypertension is associated with impaired endothelium-dependent vasodilation. Inactivation of endothelium-derived nitric oxide by oxygen free radicals participates in endothelial dysfunction in experimental hypertension. To test this hypothesis in humans, we evaluated the effect of antioxidant vitamin C on endothelium-dependent responses in essential hypertensive patients. In 14 healthy subjects (47.1+/-4.8 years; blood pressure, 120.6+/-4.5/80.9+/-3.5 mm Hg) and 14 essential hypertensive patients (47.3+/-5.1 years; blood pressure, 153.9+/-7.1/102.3+/-4.1 mm Hg), we studied forearm blood flow (strain-gauge plethysmography) modifications induced by intrabrachial acetylcholine (0.15, 0.45, 1.5, 4.5, and 15 microg x 100 mL(-1) x min(-1)) or sodium nitroprusside (1, 2, and 4 microg/100 mL forearm tissue per minute), an endothelium-dependent and -independent vasodilator, respectively, in basal conditions and during infusion of intrabrachial vitamin C (2.4 mg/100 mL forearm tissue per minute). In hypertensive patients but not in control subjects, vitamin C increased (P<0.01) the impaired vasodilation to acetylcholine, whereas the response to sodium nitroprusside was unaffected. Moreover, in another 14 hypertensive patients (47.1+/-5.2 years; blood pressure, 155.2+/-6.9/103.7+/-4.5 mm Hg), the facilitating effect of vitamin C on vasodilation to acetylcholine was reversed by N(G)-monomethyl-L-arginine (100 microg/100 mL forearm tissue per minute), a nitric oxide synthase inhibitor, suggesting that in essential hypertension superoxide anions impair endothelium-dependent vasodilation by nitric oxide breakdown. Finally, because in adjunctive 7 hypertensive patients (47.8+/-6.1 years; blood pressure, 155.3+/-6.8/103.5+/-4.3 mm Hg), indomethacin (50 microg/100 mL forearm tissue per minute), a cyclooxygenase inhibitor, prevented the potentiating effect of vitamin C on vasodilation to acetylcholine, it is possible that in essential hypertension a main source of superoxide anions could be the cyclooxygenase pathway. In essential hypertensive patients, impaired endothelial vasodilation can be improved by the antioxidant vitamin C, an effect that can be reversed by the nitric oxide synthase inhibitor N(G)-monomethyl-L-arginine. These findings support the hypothesis that nitric oxide inactivation by oxygen free radicals contributes to endothelial dysfunction in essential hypertension.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.