Abstract

Maxwell's fish-eye is a paradigm for an absolute optical instrument with a refractive index deduced from the stereographic projection of a sphere on a plane. We investigate experimentally the dynamics of flexural waves in a thin plate with a thickness varying according to the Maxwell fish-eye index profile and a clamped boundary. We demonstrate subwavelength focusing and temporal pulse compression at the image point. This is achieved by introducing a sink emitting a cancelling signal optimally shaped using a time-reversal procedure. Perfect absorption and outward going wave cancellation at the focus point are demonstrated. The time evolution of the kinetic energy stored inside the cavity reveals that the sink absorbs energy out of the plate ten times faster than the natural decay rate.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.