Abstract
Abstract Subsurface eddies are a special type of oceanic eddy that display the maximum velocity in the subsurface layer. Based on field observations, a lens-shaped subsurface anticyclonic eddy (SAE) was detected in the northern South China Sea (SCS) in May 2021. The SAE was located between 20 and 200 m, with a shoaling of the seasonal thermocline and deepening of the main thermocline. Satellite images showed that the SAE exhibited positive sea level anomaly (SLA) and negative sea surface temperature (SST) anomaly. Eddy track indicated that this SAE originated from the Luzon Strait and was generated in the Kuroshio Loop Current (KLC) last winter. The evolution of the SAE was related to the anomalous water properties inside the eddy and the seasonal change of sea surface heat flux. In winter, the continuous surface cooling and Kuroshio intrusion led to a cold, salty core in the upper part of the anticyclonic eddy, which resulted in a subsurface-intensified structure through geostrophic adjustment. As the season changed from winter to spring, sea surface temperature increased. The lens-shaped structure was formed when the seasonal thermocline appeared near the surface that capped the winter well-mixed water inside the eddy. From 1993 to 2021, nearly half of the winter KLC shedding eddies (12/25) survived to late spring and evolved into subsurface lens-shaped structures. This result indicates that the transition of KLC shedding eddy to SAE is a common phenomenon in the northern SCS, which is potentially important for local air–sea interaction, heat–salt balance, and biogeochemical processes. Significance Statement Subsurface eddies are lens-shaped eddies with anomalous water properties in the subsurface layer. While such eddies have been reported in many regions of the World Ocean, they are poorly investigated in the SCS, especially the periodic subsurface eddies that appear in a fixed time frame with similar patterns and trajectories. This study reported a subsurface anticyclonic eddy (SAE) in the northern SCS and elucidated its generation and evolution processes. Statistical results confirm that this is a periodic SAE, which occurs nearly annually in late spring and evolves from the Kuroshio shedding eddy with seasonal changes. This study provides a new perspective on the evolution of subsurface eddies in the SCS and will benefit targeted observations in the future.
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have