Abstract

The origins and evolutions of two anticyclonic eddies in the northeastern South China Sea (SCS) were examined using multi-satellite remote sensing data, trajectory data of surface drifting buoys, and in-situ hydrographic data during winter 2003/2004. The results showed that buoy 22918 tracked an anti-cyclonic warm-core eddy (AE1) for about 20 days (December 4–23, 2003) in the northeastern SCS, and then escaped from AE1 eventually. Subsequently to that, buoy 22517 remained within a different anti-cyclonic warm-core eddy (AE2) for about 78 days (from January 28 to April 14, 2004) in the same area. It drifted southwestward for about 540 km, and finally entered into the so-called “Luzon Gyre”. Using inference from sea level anomaly (SLA), sea surface temperature (SST), geostrophic currents and the buoys’ trajectories, it is shown that both eddies propagated southwestward along the continental slope of the northern SCS. The mean speeds of AE1 and AE2 movements were 9.7 cm/s and 10.5 cm/s, respectively, which are similar to the phase speed of Rossby waves in the northern SCS. The variation of instantaneous speeds of the eddy movement and intensity of anticyclonic eddy may suggest complex interactions between an anticyclonic eddy and its ambient fluids in the northern SCS, where the eddy propagated southwestward with Rossby waves. Furthermore, SLA and SST images in combination with the temperature and salinity profiles obtained during a cruise suggested that AE1 was generated in the interior SCS and AE2 was shed from the “Kuroshio meander”.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call