Abstract
A novel data covariance model has recently been proposed for the subspace-based estimation of multiple real-valued sine wave frequencies. In this paper, we develop weighted subspace fitting approaches using this new data model. A new parameterization of the noise subspace is proposed. This parameterization is used to solve the subspace fitting problem analytically. An expression for the residual covariance matrix is derived. This covariance matrix is further used to obtain an optimally weighted Gauss-Markov estimator. A computationally efficient suboptimal weighting is also proposed, and the associated estimator is close to the Gauss-Markov estimator in performance. The suboptimal weighting strategy is quite general and can be used in other related applications. The performance of the algorithms are illustrated using numerical simulations. The proposed subspace fitting approach shows improved resolution performance. It is also robust to additive noise.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.