Abstract

To explore the effect of suberoylanilide hydroxamic acid (SAHA) (i) on corneal fibroblast differentiation, morphology, and viability; and (ii) on the expression levels of matrix metalloproteinases (MMPs) 2 and 9 using an in vitro model of equine corneal fibrosis. Healthy donor corneas were used to generate primary cultures of equine corneal fibroblasts. The fibroblasts were exposed to 5 ng/mL TGFβ1 to induce myofibroblast formation. The cultures were treated with either 5 μm or 10 μm SAHA for 72 h in the presence of TGFβ1. Real-time PCR and immunocytochemistry were used to determine the antifibrotic efficacy of SAHA by quantifying α-smooth muscle actin (αSMA), a marker of myofibroblast formation and fibrosis. Real-time PCR was used to determine the effects of SAHA on MMP2 and MMP9 expression. Cytotoxicity of SAHA was evaluated with phase contrast microscopy and trypan blue exclusion assays. Suberoylanilide hydroxamic acid (SAHA) significantly attenuated TGFβ1-induced differentiation of equine fibroblasts to myofibroblasts as indicated by 3- to 3.5-fold (P < 0.001) decrease in αSMA mRNA and 86-88% (P < 0.001) decrease in αSMA+ immunocytochemical staining. SAHA treatment also resulted in 4.5- to 5.5-fold (P < 0.01) decrease in MMP9 expression. A dose-dependent bimodal effect of SAHA on MMP2 expression was noted (3.5-fold increase with 5 μm dose; 0.5-fold decrease with 10 μm dose). No change in fibroblast viability was observed with a 5 μm SAHA dose, whereas a 10 μm dose resulted in a moderate 17% decrease in cell viability. Suberoylanilide hydroxamic acid (SAHA) can effectively inhibit TGFβ-induced differentiation of equine corneal fibroblasts to myofibroblasts and modulates MMP production in vitro.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.