Abstract

Methylation of tumor suppressor genes is frequently observed in human cancers. These genes are silenced by histone deacetylase (HDAC) recruited by methylated DNA in their promoter regions. HDAC removes acetyl groups from histones and prevents the basic transcriptional machinary access to the target gene, leading to transcriptional repression. HDAC inhibitors (HDACIs) can restore the expression of the tumor suppressor and/or cell cycle regulatory genes in cancer cells and block the cellular proliferation of these cells. In this study, we investigated the in vitro antiproliferative activities of the HDACIs, suberoylanilide hydroxamic acid (SAHA), and valproic acid against 14 human lymphoid cancer cell lines. All of these cell lines were sensitive to the antiproliferative effects of the HDACI. SAHA induced either G1 or G2-M arrest as well as apoptosis. SAHA downregulated cyclin D1 and D2, and upregulated p53, p21, and p27. Chromatin immunoprecipitation analysis revealed a remarkable increase in the level of acetylated histones associated with the p21 promoter after SAHA treatment. In nude mice, SAHA significantly inhibited growth of a mantle cell lymphoma without major toxic side effects. In summary, HDACIs are promising therapeutic agents for human lymphoid cancers.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.