Abstract
This study was conducted to compare the microbiome and metabolome differences in the colon lumen from two pig breeds with different genetic backgrounds. Fourteen weaned piglets at 30 days of age, including seven Landrace piglets (a lean-type pig breed with a fast growth rate) and seven Meihua piglets (a fatty-type Chinese local pig breed with a slow growth rate), were fed the same diets for 35 days. Untargeted metabolomics analyses showed that a total of 401 metabolites differed between Landrace and Meihua. Seventy of these 401 metabolites were conclusively identified. Landrace accumulated more short-chain fatty acids (SCFAs) and secondary bile acids in the colon lumen. Moreover, expression of the SCFAs transporter (solute carrier family 5 member 8, SLC5A8) and receptor (G protein-coupled receptor 41, GPR41) in the colon mucosa was higher, while the bile acids receptor (farnesoid X receptor, FXR) had lower expression in Landrace compared to Meihua. The relative abundances of 8 genera and 16 species of bacteria differed significantly between Landrace and Meihua, and were closely related to the colonic concentrations of bile acids or SCFAs based on Pearson's correlation analysis. Collectively, our results demonstrate for the first time that there were differences in the colonic microbiome and metabolome between Meihua and Landrace piglets, with the most profound disparity in production of SCFAs and secondary bile acids.
Highlights
The gastrointestinal tract is a multi-function organ that harbors a dynamic microbiota population that interacts with the nutritional, physiological, and immunological functions of the host (Brestoff and Artis, 2013)
We investigated the composition of the microbiome and its metabolites in the colon contents of two pig breeds, using a combination of 16S rRNA gene highthroughput sequencing and MS-based metabolomics techniques
We found that the microbiome and metabolome in the colon lumen were significantly different between Meihua and Landrace piglets, breeds with varied growth rates (Figure 2D)
Summary
The gastrointestinal tract is a multi-function organ that harbors a dynamic microbiota population that interacts with the nutritional, physiological, and immunological functions of the host (Brestoff and Artis, 2013). Gut microbiota can influence nutrient digestion and absorption (Turnbaugh et al, 2006), lipid metabolism (Li F. et al, 2013), and hormone biosynthesis (Clarke et al, 2014) in their hosts through key functional metabolites (Clarke et al, 2014; Levy et al, 2016), which include short chain fatty acids (SCFAs), bile acids, indoles, vitamins, and polyamines (Yan et al, 2016). Microbiotaderived bile acids can modulate the metabolic activities of the host through activation of bile acid receptors such as farnesoid X receptor (FXR) and Takeda G protein-coupled receptor 5 (TGR5) (Fiorucci et al, 2009; Wahlstrom et al, 2016)
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.