Abstract
Frazil ice is the foundation for all other ice phenomena, and its spatiotemporal evolution is critical for regulating ice conditions in rivers and channels, as well as for preventing and controlling ice damage. This paper investigates the dynamic transport pattern of frazil ice during the early stages of winter freezing in water conveyance channels based on a CFD-DEM coupled numerical model, and derives predictive formulae for the spatiotemporal evolution of frazil ice and floating ice. First, static repose angle simulations and slope sliding simulations were used to calibrate the contact parameters between frazil ice particles and between frazil ice and the channel bed, ensuring the accurate calculation of contact forces in the model. On this basis, the processes of frazil ice transport, aggregation, and upward movement in water transfer channels were simulated, and the influence of contact parameters on simulation results was analyzed, showing a significant effect when the ice concentration was high. Numerical results indicate that the amount of suspended frazil ice is positively correlated with the frazil ice generation rate and water depth, with minimal influence from the flow velocity; the amount of floating ice increases linearly along the channel, with growth positively correlated with the frazil ice generation rate and water depth, and negatively correlated with the flow velocity. Predictive formulae correlating frazil ice and floating ice amounts with the flow velocity, water depth, and other factors were proposed based on numerical results. There is good agreement between the predictive and numerical results: the maximum APE between the predicted and simulated values of suspended frazil ice is 13.24%, and the MAPE is 6.32%; the maximum APE between the predicted and simulated values of floating ice increment is 7.80%, and the MAPE is 2.89%. The proposed prediction formulae can provide a theoretical basis for accurately predicting ice conditions during the early stages of winter freezing in rivers and channels.
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have