Abstract
Abstract This work investigates the innovative design of a 14 nm bulk 3D non-rectangular structure fin field-effect transistor (FinFET). By incorporating a cylindrical trapezoidal structure into the upper portion of the FinFET, it transcend the limitations posed by the self-heating (SH) effect observed in traditional rectangular fins.Through the density gradient model and thermal conduction model, the changes in the electron carrier temperature and lattice temperature of the channel are studied, and the relationship between electrical properties and thermal resistance was further analyzed, revealing the effect of SH on the threshold voltage and switching speed of the device. In addition, the SH effect of the doping of source and drain extension regions was also explored, and the effects of electron mobility changes at different ambient temperatures were also studied to clarify their impact on the electrical properties. Ultimately, this work offers novel insights into the design, optimization, and reliability studies of device structures affected by SH effects.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.