Abstract

ZnWO4is easy to color, which will reduce the luminous efficiency of the crystal and limit the application of the crystal. In order to study the origin of the color in the crystal, in this paper, the effects of the oxygen vacancy on the optical properties for the ZnWO4crystal have been studied based on the density functional theory (DFT). The hybrid functional method (HSE) and the finite-size correction scheme (FNV) are used to correct the band edge problem and eliminate the artificial interaction of the charged defects, respectively. On the basis of the corrected defect formation energy, we obtain the optical spectra of the [Formula: see text] and [Formula: see text] centers containing electron-phonon coupling. The calculated absorption and luminescence peaks are at 2.54 eV and 0.79 eV for the [Formula: see text] center and at 2.98 eV and 1.09 eV for the [Formula: see text] center, respectively. The calculated absorption band of the [Formula: see text] center is close to the experimental value of 2.48 eV (500 nm), so we speculate that the coloring of the ZnWO4crystal is related to the [Formula: see text] center. Meanwhile, the existence of oxygen vacancy makes ZnWO4crystal to have self-absorption and to increase decay time, which greatly affects the scintillation properties of the crystal.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call