Abstract

In this paper, we present the optical spectra of the ZrO2 crystal containing oxygen vacancy based on the Density Functional Theory (DFT). The finite-size correction scheme (FNV) is employed to eliminate the artificial interactions and correct the defect formation energy of oxygen vacancies with three different charges (0, +1, +2). Besides, we use hybrid density functionals to relieve the band edge problem. Finally, we obtain the optical spectra for the F center and F[Formula: see text] center containing the electron–phonon coupling. The absorption peak of F center of threefold coordinate oxygen vacancy (V[Formula: see text]) near 446 nm (2.78 eV) agrees well with the experimental value (2.83 eV), which can enhance the visible light photocatalytic ability of ZrO2. The luminescence peak of the F[Formula: see text] center of fourfold coordinate oxygen vacancy (V[Formula: see text]) is 561 nm (2.21 eV), which is close to the experimental value (2.5 eV).

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call