Abstract
Based on the first-principles, we simulated the spectral properties of PbWO4 (PWO) crystals with an oxygen vacancy. As density functional theory (DFT) underestimates the band gap, the band edge is modified by Heyd-Scuseria-Ernzerhof (HSE). Moreover, artificial interactions of the charged defect of oxygen vacancies with three different charges have been corrected by finite-size correction scheme (FNV). Finally, the optical properties are obtained containing electron–phonon coupling. The calculated absorption band peaks of the F and F[Formula: see text] centers at 1.7[Formula: see text]eV and 2.47[Formula: see text]eV agree well with the experimental value, respectively.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.