Abstract

Czochralski-grown crystal silicon (CZSi) was doped by neutron transmutation. The deep energy levels after heat treatment of neutron transmutation doped Czochralski-grown silicon (NTDCZSi) were investigated by photo-induced transient spectroscopy (PITS) and deep level transient spectroscopy (DLTS). The interstitial oxygen concentration and substitutional carbon concentration were measured by Fourier transfer infrared spectrometry (FTIR). The experimental results showed that there are seven deep levels in the band gap of silicon caused by neutron irradiation. The defect centers corresponding to these deep levels were also deduced. The formation and decomposition of these defects during annealing were discussed.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.