Abstract

This paper describes a preliminary study on the synthesis of glycopeptide-based triblock copolymers and their aggregate behavior in water. Initially, a polypeptide-based triblock copolymer, poly(L-lysine)-b-poly(tetrahydrofuran)-b-poly(L-lysine) (PLL30-b-PTHF-b-PLL30), was synthesized by the ring-opening polymerization of ɛ-benzyloxycarbonyl-L-lysine N-carboxyanhydride using amine-terminated poly(tetrahydrofuran) as a macroinitiator in the fixed feed ratio, followed by the removal of the protecting group. The resulting copolymer then reacted with a varying amount of D-gluconolactone in the presence of dipropylethylamine to give the corresponding glycopeptide-based copolymers with high yields. This kind of amphiphilic sugar-containing triblock copolymer can self-assemble into nano-sized aggregates in water. The critical aggregation concentration (CAC) was determined in the range of around 10−6 M by fluorescence measurement. The spherical morphologies in 100–150 nm scale were also evidenced by transmission electron microscopy (TEM) measurements. They show potential as carriers for drug controlled delivery and templates for biomimetic mineralization.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.