Abstract
The antibacterial and biological properties of silver-loated coralline hydroxyapatite (Ag-CHA) as a new antibacterial implant material were investigated in this study. Compared to other antibiotic and chemical bactericidal agents, Ag+ does not bring bacterial resistance to drugs and has less toxicity. The porous CHA was formed by hydrothermal exchange, then Ag+ was loated onto CHA through ion exchange and adsorption. The microstructure and composition of Ag-CHA were characterized by scanning electron microscopy (SEM), Rutherford backscattering spectrometry (RBS), and energy dispersive spectrometry (EDS). Antibacterial activity of Ag-CHA on the clinical strains of Escherichia coli (E. Coli) and Staphylococcus aureus (S. Aureus) was evaluated by the flat plate diffusion method. The antibacterial activity of Ag-CHA was found to be correlated with the concentration of Ag+ in a dose-dependent manner, which indicated that the optimal antibacterial and biocompatible effects of Ag-CHA could be obtained with Ag+ concentrations from 5×10−5 to 1×10−4 mol/L.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.