Abstract

In the present study we describe a synthesis and self-assembly and an in vitro evaluation of a kind of novel amphiphilic glycopeptide block copolymers as carriers for controlled drug release. Initially, an amphiphilic ABA triblock copolymer comprising polytetrahydrofuran (PTHF) as a central hydrophobic block flanked by poly(l-lysine)s (PLLs) as outer hydrophilic blocks was synthesized through the ring-opening polymerization of ɛ-benzyloxycarbonyl-l-lysine N-carboxyanhydride with a distal amine-terminated PTHF as a macroinitiator, followed by removal of the protecting group. Afterwards the resulting triblock copolymer was allowed to react with d-gluconolactone and lactobionolactone in the varying feeding ratios in the presence of diisopropylethylamine leading to the target glycopeptide block copolymers with high yields. They were found to easily self-assemble into nano-sized aggregates in water. The critical aggregation concentrations (CACs) were assessed by fluorescence measurement with N-phenyl-1-naphthylamine employed as a molecular probe. The particle sizes of the aggregates before and after doxorubicin loading were determined by dynamic light scattering (DLS) and the aggregate morphologies were evidenced by transmission electron microscopy (TEM) measurements. Finally, the in vitro doxorubicin loading capacity and release behavior were investigated with these glycopeptide copolymers as carriers for controlled release.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call