Abstract

Sodium alginate (SA) blending with quaternary ammonium chitosan (QAC) polysaccharide polyelectrolyte complex (PEC) system was chosen to research the binary blending of anionic and cationic polyelectrolytes in detail and to fabricate SA/QAC composite fibers. The potential charge and the rheology of the PEC solution were characterized through Zeta Laser Particle Size Analyzer and DV-C Rotary Rheometer, the structure and properties of the composite fiber were examined by FT-IR, XRD, SEM, EDS, and YG004 single fiber strength meter. The results showed that as the mass ratio of SA to QAC increased from 0/1 to 10/1, the state of the binary solution in water changed from transparent uniform solution to turbid solution with flocculent precipitate, then back to uniform solution, accompanied by the electrical potential change. Moreover, the electrical potential also depended on salt in solution. By using this uniform PEC solution with the mass ratio of SA to QAC 10/1 and concentration 5.5 wt% in water, SA/QAC composite fibers with excellent performances of breaking strength 2.37 cN·dtex−1 and breaking elongation 14.11%, good antibacterial and hydrophobic properties were fabricated via green wet-spinning process. The FT-IR and EDS determination indicated there formed egg-box between SA and Ca2+, cross-linked network between glutaraldehyde(GA) and SA, QAC, respectively. Depending on its mechanical, natural, and antibacterial properties, the SA/QAC composite fiber has advantages in wound dressing, medical gauze, medical absorbable suture, and tissue engineering.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call