Abstract

The phenomenon of microbial resistance and its resulting biofilms to traditional antibiotics is worsening over time. Therefore, the discovery of alternative substances that inhibit microbial activities through mechanisms different from those of known antibiotics requires attention. So, chitosan was crosslinked using different amounts of oxalyl dihydrazide yielding four novel hydrogels; ODHCs-I, ODHCs-II, ODHCs-III, and ODHCs-IV of crosslinking degree 12.17, 20.67, 31.67, and 43.17, respectively. Different amounts of CuO nanoparticles were impregnated into ODHCs-IV, obtaining ODHCs-IV/CuONPs-1 %, ODHCs-IV/CuONPs-3 % and ODHCs-IV/CuONPs-5 % composites. Their structure was emphasized using FTIR, SEM, XRD, TEM, EDX and elemental analysis. Their in vitro antimicrobial and anti-biofilm activities improved with increasing ODH and CuONPs content. ODHCs-IV exhibited minimal inhibition concentration (2 μg/mL) against S. pyogenes that was much lower than Vancomycin (3.9 μg/mL). ODHCs-IV/CuONPs-5 % displayed better inhibition performance than Vancomycin and Amphotericin B against Gram-positive-bacteria and fungi, respectively, and comparable one to that of Vancomycin against Gram-negative-bacteria. ODHCs-IV/CuONPs-5 % displayed much lower minimal biofilm inhibition concentrations (1.95 to 3.9 μg/mL) as compared with those of ODHCs-IV (7.81 and 15.63 μg/mL), against C. albicans, S. pyogenes, and K. pneumonia. ODHCs-IV/CuONPs-5 % composite is safe on normal human cells. Oxalyl dihydrazide and CuONPs amalgamated into chitosan in one formulation promoted its antimicrobial efficiency.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call