Based on the localized data of environmental load, this study has establishedthe life cycle assessment (LCA) model of battery electric passenger vehicle(BEPV) that be produced and used in China, and has evaluated the energyconsumption and greenhouse gases (GHGs) emission during vehicle pro-duction and operation. The results show that the total energy consumptionand GHG emissions are 438GJ and 37,100kg (in terms of CO2 equivalent)respectively. The share of GHG emissions in total emissions at the productionstage is 24.6%, and 75.4% GHG emissions are contributed by the operationalstage. The main source of energy consumption and GHG emissions at vehicleproduction stage is the extraction and processing of raw materials. TheGHG emissions of raw materials production accounts for 75.0% in the GHGemissions of vehicle production and 18.0% in the GHG emissions of fulllife cycle. The scenario analysis shows that the application of recyclablematerials, power grid GHG emission rates and vehicle energy consumption rates have significant influence on the carbon emissions in the life cycle ofvehicle. Replacing primary metals with recycled metals can reduce GHGemissions of vehicle production by about 7.3%, and total GHG emissionscan be reduced by about 1.8%. For every 1% decrease in GHG emissionsper unit of electricity, the GHG emissions of operation stage will decrease byabout 0.9%; for every 1.0% decrease in vehicle energy consumption rate, thetotal GHG emissions decrease by about 0.8%. Therefore, developing cleanenergy, reducing the proportion of coal power, optimizing the productionof raw materials and increasing the application of recyclable materials areeffective ways to improve the environmental performance of BEPV.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call