Abstract
BackgroundSocietal pressures exist to reduce greenhouse gas (GHG) emissions from farm animals, especially in beef cattle. Both total GHG and GHG emissions per unit of product decrease as productivity increases. Limitations of previous studies on GHG emissions are that they generally describe feed intake inadequately, assess the consequences of selection on particular traits only, or examine consequences for only part of the production chain. Here, we examine GHG emissions for the whole production chain, with the estimated cost of carbon included as an extra cost on traits in the breeding objective of the production system.MethodsWe examined an example beef production system where economic merit was measured from weaning to slaughter. The estimated cost of the carbon dioxide equivalent (CO2-e) associated with feed intake change is included in the economic values calculated for the breeding objective traits and comes in addition to the cost of the feed associated with trait change. GHG emission effects on the production system are accumulated over the breeding objective traits, and the reduction in GHG emissions is evaluated, for different carbon prices, both for the individual animal and the production system.ResultsMultiple-trait selection in beef cattle can reduce total GHG and GHG emissions per unit of product while increasing economic performance if the cost of feed in the breeding objective is high. When carbon price was $10, $20, $30 and $40/ton CO2-e, selection decreased total GHG emissions by 1.1, 1.6, 2.1 and 2.6% per generation, respectively. When the cost of feed for the breeding objective was low, selection reduced total GHG emissions only if carbon price was high (~ $80/ton CO2-e). Ignoring the costs of GHG emissions when feed cost was low substantially increased emissions (e.g. 4.4% per generation or ~ 8.8% in 10 years).ConclusionsThe ability to reduce GHG emissions in beef cattle depends on the cost of feed in the breeding objective of the production system. Multiple-trait selection will reduce emissions, while improving economic performance, if the cost of feed in the breeding objective is high. If it is low, greater growth will be favoured, leading to an increase in GHG emissions that may be undesirable.
Highlights
Societal pressures exist to reduce greenhouse gas (GHG) emissions from farm animals, especially in beef cattle
Selection when the feed needed to improve breeding objective traits is expensive In production systems in which the cost of feed for the breeding objective is expensive (e.g. Table 1), selection is able to simultaneously reduce GHG emissions and increase economic performance
Trends in responses for individual traits (Fig. 3), and for the production system (Fig. 4), did not differ markedly when no association was assumed between changes in residual feed intake (RFI) traits and GHG emissions
Summary
Societal pressures exist to reduce greenhouse gas (GHG) emissions from farm animals, especially in beef cattle. Both total GHG and GHG emissions per unit of product decrease as productivity increases. Limitations of previous studies on GHG emissions are that they generally describe feed intake inadequately, assess the consequences of selection on particular traits only, or examine consequences for only part of the production chain. We examine GHG emissions for the whole production chain, with the estimated cost of carbon included as an extra cost on traits in the breeding objective of the production system. Concern about global warming has focussed attention on reducing greenhouse gas (GHG) emissions from farm animals [1, 2], in beef cattle [3, 4]. Quinton et al [6] reported that decreases in total GHG emissions and GHG emissions per unit of product accompanied increases in productivity in beef cattle.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.