Abstract

The high-temperature oxidation behavior of CrN and Cr–Si–N films was investigated. These films were deposited on STS 304 substrates by a hybrid deposition system with arc ion plating (AIP) and DC magnetron sputtering method using separate Cr (99.99%) and Si (99.99%) targets in a gaseous mixture of Ar and N 2. Good oxidation resistance of the CrN film was further improved by the incorporation of Si into the CrN film. The oxidation products of the Cr–Si–N film were Cr 2O 3 and amorphous SiO 2, which were gradually formed by the outward diffusion of Cr, Si, and N as well as the inward diffusion of oxygen. The oxidation kinetics of the specimen showed parabolic behavior, indicating that the diffusion process prevailed during oxidation. The oxidation activation energies for CrN, CrSi 0.10N, and CrSi 0.15N coatings are 303.8, 316.4, and 333.9 kJ/mol, respectively.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.