Abstract
The friction characteristics at the interface between prosthetic socket and liner have an important influence on the walking function and wearing comfort of amputees. The frictional behavior at the prosthetic socket/liner interface can provide theoretical guidance for the design and selection of prosthetic materials. So it is of great significance to study the friction behavior at prosthetic socket/liner interface. The surface roughnesses of the prosthetic socket and liner materials were measured by a laser confocal microscope. The frictional behavior at the prosthetic socket/liner interface was studied on a UMT TriboLab Tribometer by simulating the reciprocating sliding contact mode. An infrared camera was used to take thermal images and then calculated the temperature increase at the socket/liner interface. The coefficient of friction of the silicon rubber fabric are significantly smaller than that of the foam liner materials. The frictional energy dissipation at the liner/acrylic socket interface is the smallest, while it is greater for 3D-printed socket materials. Meanwhile, the temperature increase has a positive correlation to the coefficient of friction and frictional energy dissipation. The three kinds of 3D-printed materials with high surface roughness have higher interface coefficient of friction and energy dissipation than acrylic material. The stiffness and energy consumption play an important role in the interface friction characteristics of the prosthetic liner materials. The appropriate coefficient of friction at the surface between prosthetic socket and liner is essential. A type of the reinforcement fiber has influence on the friction behavior of the 3D-printed reinforced nylon.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.