Abstract

To improve the interfacial compatibility of jute fiber reinforced polypropylene (PP) composites, hydrothermal method was used to deposit SiO2 nanoparticles on the surface of pretreated jute fibers and the effect of reaction factors (tetraethoxysilane [TEOS] concentration, ammonia concentration, and reaction temperature) on the deposition of SiO2 nanoparticles were evaluated. The results of FTIR, XRD, SEM, and TEM showed that the amorphous SiO2 nanoparticles with an average particle size of 65.0 nm were successfully deposited on the surface of jute fibers at the TEOS/H2O volume ratio of 1:2, ammonia of 0.55 M, reaction temperature of 100 °C (0.15 MPa) for 5 h. Compared with the sol–gel method, SiO2 nanoparticles obtained by the hydrothermal method possessed smaller particle size and were less agglomerated, which can better fill in the surface defects of the jute fibers and result in a 12.9% increase in the tensile strength. The study on the mechanical properties and interface performance of the jute fiber reinforced PP composites indicated that the interfacial compatibility between jute fibers and PP was obviously improved. The tensile and impact strength of the composites reinforced with nano‐SiO2 deposited jute fibers were increased by 26.87% and 25.65%, respectively, compared with the untreated jute fibers. J. VINYL ADDIT. TECHNOL., 26:43–54, 2020. © 2019 Society of Plastics Engineers

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call