Abstract

With growing demands for large-scale energy storage, metal sulfides have received great attention due to their high theoretical capacity as anode materials for sodium-ion batteries (SIBs). However, metal sulfides have a problem of poor stability. Thus, it is important to find suitable solutions. In this work, uniform ZnS nanospheres (ZnS NSs) are synthesized through a wet chemical method. And then, by compounding with reduced graphene oxide (rGO), ZnS NSs@rGO are synthesized in which ZnS NSs are evenly distributed on rGO. When we evaluate the cycle performance, ZnS NSs@rGO deliver a high discharge capacity of 634.6 mA h g−1 at a current density of 0.5 Ag−1 after 1000 cycles. Through charge/discharge processes of in-situ XRD analysis, we confirm the sodiation/desodiation mechanism of ZnS NSs@rGO.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.