Abstract
We investigate the energy band structure of nanoporous silicon thin film using first principles calculation based on density functional theory (DFT) with the generalized gradient approximation (GGA). The calculation results show that the band gaps of nanoporous silicon increase with increasing porosity, increase with decreasing the thickness of matrix layer, and almost independent of the thickness of pore layer. Moreover, the band structure of nanoporous silicon can be transformed from indirect to direct gap on thin films of (111) and (110) faces. It will be the guidance and reference for the fabrication of porous silicon optoelectronic devices.
Published Version (
Free)
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have