Abstract

Zirconium is studied in this paper as a reflector for light water reactors. An exploratory analysis of using zirconium as a reflector for two simple reactor core models was carried out. The study showed that use of zirconium as a reflector has a valuable impact on the core reactivity. The study also showed that zirconium-water reflector is more effective than water reflector or stainless steel-water reflector. A typical Westinghouse 1150-MW(electric) pressurized water reactor was simulated using the Monte Carlo code MCNP5 as a case study. The simulation was carried out at the beginning of the core cycle of three batch cores with 235U enrichments of 2.25, 2.8, and 3.3 wt%. The simulation showed that use of Zircaloy-4 reflector between the fuel assemblies and the core barrel adds a positive reactivity Δkeff of 0.00686, while use of stainless steel reflector adds a positive reactivity Δkeff of 0.0037.Use of Zircaloy-4 reflector increases the relative power density in the peripheral assemblies by ˜38%. The power peaking factor is shifted from the center toward the periphery, and the assembly power peaking factor is reduced by ˜13%. The use of Zircaloy-4 reflector with this increase of the reactivity of the peripheral assemblies increases the fast neutron current (E > 0.5 MeV) that reaches the reactor pressure vessel (RPV) by 70%, while the use of stainless steel reflector reduces it by 44%.Adjusting the 235U enrichment in the peripheral assemblies batch to compensate for the excess reactivity caused by using Zircaloy-4 reflector reduces the 235U enrichment by 8.5% in this batch. This means a reduction of 3.35% of the core 235U average enrichment can be achieved by the use of Zircaloy-4 reflector. This reduction in the 235U enrichment reduces the increase of the fast neutron current that reaches the RPV to 23%. In this case, increasing the water gap between the core barrel and the RPV by 3 cm reduces the fast neutron current that reaches the RPV to 95% of that of the basic case. The use of Zircaloy-4 reflector has a good effect on flattening the fission density distribution in the peripheral assemblies batch both before and after reducing 235U enrichment.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call