Abstract

In the first part of this series, a new mechanical parameter, that is, “Comprehensive Tensile Modulus (CTM)” is introduced and modeled to show the tensile behavior of plain-woven fabrics in the initial linear elastic region of the force-elongation curve subjected to tensile load and extended it simultaneously in all directions. Considering the initial load-extension behavior of fabrics, a mathematical-mechanical model is presented to predict the CTM of fabrics in the initial linear elastic region using Castigliano’s theorem. Based on the generated model, the initial sample length, dimension of the load imposed region, the geometrical shape created in the plain-woven fabric sample during tensile, the structural specification of these fabrics such as yarns sett, yarns crimp in fabric and mechanical properties of yarns such as bending rigidity in both warp and weft yarns affect in the comprehensive tensile modulus of fabric. In order to verify the conformity and accuracy of the model, a preliminary test was conducted on the prepared samples based on a novel tensile test method developed to measure load-extension curve of the fabric samples under the proposed loading condition. A reasonable agreement was found between theoretical and experimental results.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.