Abstract

There is a variety of approaches for investigating bending behavior of woven fabrics. Some of them are based on fabric deformation with one edge fixed; the others are based on measurement of force, moment or energy producing bending deformation. In all methods, bending properties is acquired after testing prepared fabric samples. Therefore, in this work an attempt is made by a mechanical model and a novel calculation technique to determine bending characteristics of the plain woven fabrics before sample production. Theoretical data including bending length, bending rigidity and bending modulus were directly determined for supposed fabric samples with a given yarn count and yarn density using Peirce’s structural model for plain woven fabric and a especial code written in Maple12. Besides, fabric samples with the defined characteristics were woven on a Sulzer-Ruti weaving machine. Then, these fabrics were tested for bending behavior using Shirley bending tester. Comparison showed good agreement between predicted and measured bending characteristics of the fabrics. However, theoretical bending rigidities of the samples were more than experimental values.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call