Abstract

Purpose Bending and shear rigidities of woven fabrics depend on fibre, yarn and fabric-related parameters. However, there is lack of research efforts to understand how bending and shear rigidities change in woven fabrics having similar areal density. The purpose of this paper is to investigate the change in bending and shear rigidities in plain woven fabrics having similar areal density. Design/methodology/approach A total of 18 fabrics were woven (9 each for 100 per cent cotton and 100 per cent polyester) keeping the areal density same. Yarns of 20, 30 and 40 Ne were used in warp and weft wise directions and fabric sett was adjusted to attain the desired areal density. Findings When warp yarns become finer, keeping weft yarns same, bending rigidity remains unchanged but shear rigidity increases in warp wise direction. When weft yarns are made finer, keeping the warp yarns same, both the bending and shear rigidities of fabric increase in warp wise direction. Similar results for fabric bending and shear rigidities were obtained in transpose direction. There is a strong association between fabric shear rigidity and number of interlacement points per unit area of fabric even when fabric areal density is same. Originality/value Very limited research has been reported on the low-stress mechanical properties of woven fabrics having similar areal density. A novel attempt has been made in this research work to investigate the bending and shear rigidities of woven fabrics having similar areal density. Besides, it has been shown that it is possible to design a set of woven fabrics having similar bending rigidity but different shear rigidity.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call