Abstract

The aim was to study the effect of switching modes on the power of supply transformers in electrical networks up to 1000 V on the multiplicity of switching overvoltages, as well as to develop recommendations for their reduction. The study was carried out during switching of supply transformers in networks up to 1000 V. Vacuum contactors were used to study overvoltages arising during switching of supply transformers. Overvoltages were recorded using an RDN-1000 active divider and a Tektronix TDS2024B digital oscilloscope. The RC circuit capacitance was measured by a Mastech MY6243 digital LC-meter. To limit switching overvoltages, RC quenchers based on RC circuits were used, reducing not only the switching pulse amplitude, but also the rate of the switching pulse voltage rise. In addition, RC quenchers lack fading zones under high-frequency switching pulses. The capacitance of the primary winding of the transformers under study was measured. An increase in the transformer power was found to lead to a decrease in the multiplicity of switching overvoltages, when the transformer is disconnected from the mains. Under a 1.5-fold increase in the power of the transformer, its inductance and wave impedance decreases. As a result, when the same capacitance is connected to the transformer terminals, the wave resistance in more powerful transformers will be reduced to a larger extent (by 3 to 6 times), thus providing a more effective overvoltage limitation. The conducted experimental studies confirmed the effectiveness of RC circuits in limiting switching overvoltages.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call