Abstract

This paper presents mechanical simulations results of an innovative strain transfer structure consisting in a buried compressive SiGe layer embedded under an ultra-thin buried oxide (BOX). We studied the influence of different dimensions including the active area and determined optimal parameters of the SiGe layer maximizing the strain. We demonstrate a transfer of a tensile stress up to 1.3GPa in the silicon. Thanks to 3D simulations and the study of stress profiles in the SOI, the electron mobility enhancement is estimated to be about 80% for logic transistors at the 10nm node. The strain induced in the channel by the edge relaxation of an embedded buried SiGe layer is compared to strained Silicon-On-Insulator (sSOI) wafers and strained nitride layer for Fully Depleted Silicon-On-Insulator (FDSOI).

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.